An Adaptive Learning Approach To Parameter Estimation For Hybrid Petri Nets In Systems Biology

Petri nets (HPNs) that can model biological systems. In particular, based on a state space formulation we develop a decisionaided adaptive gradient descent (DAAGD) algorithm capable of cost-effectively estimating the parameters used in an HPN model. Contrary to standard gradient descent techniques, the DAAGD algorithm does not require prior knowledge, i.e., information about the discrete transitions’ firing instants. Simulations of a gene regulatory network assess the performance of the proposed DAAGD algorithm against standard gradient descent algorithms with full, imperfect and no prior knowledge.

Request our conference paper via our contact form!

Mehr Beiträge

Using Clinical Data and AI to reshape COPD – fractional dynamics deep learning models

Jetzt lesen 

Clinomic receives a landmark order from Sana Kliniken for 200 digital assistance and telemedicine systems Mona

Jetzt lesen 

Großauftrag für Clinomic: Sana Kliniken bestellen 200 digitale Assistenz- und Telemedizinsysteme Mona

Jetzt lesen